日本に もうひとつ 太陽をつくろう

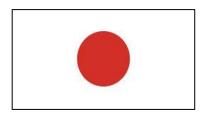
-ものづくりが実現する核融合発電-

11th September, 2025

太陽のエネルギー

人工太陽を作り、直接エネルギー源として利用

日本特有の課題 - エネルギー自給-



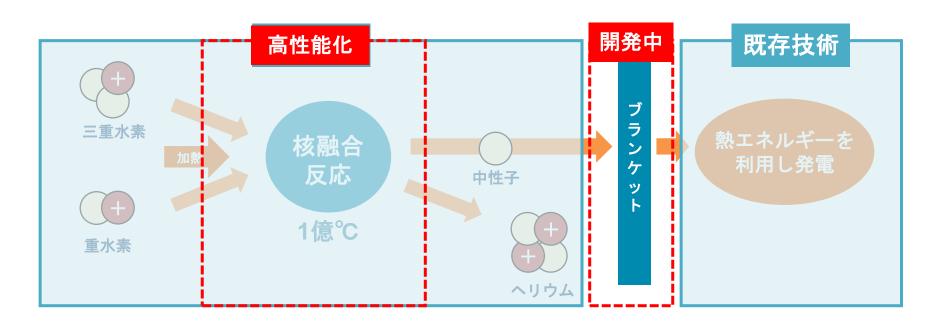
エネルギー自給率の低さが日本の弱さ 核融合は日本を「エネルギー輸出国」にする可能性がある

100%

80%

30%

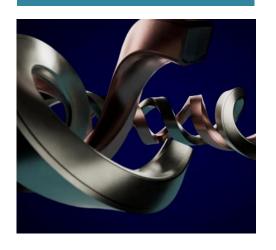
15%




100%超

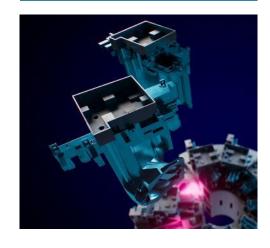
1兆円かけて国で開発が進められ、残るはあと2つの技術

Helix Program


ヘリックス計画

2030年代に「実用発電」を行う世界で唯一の開発計画

この3つが揃ってはじめて「商用発電所」となる


1. 定常運転 (1年を通して運転できる)

2. 正味発電 (外部に十分電気を出せる)

3. 保守性 (運転後の機器交換が可能)

三要件を充足して経済性を確保できるのはヘリカル方式のみ

	レーザー方式	トカマク方式	モジュラー方式	ヘリカル方式
1. 定常運転	X	×	0	0
2. 正味発電	×		0	0
3. 保守性	0		×	O

Helix Program ロードマップ

すでにプラズマの実証・炉の設計はほぼ完了。2030年代の実用発電は射程内

1950'			2028	2030	
1 概念実証 (小型装置)	2 高温プラズマ の実現 (1億度)	3 プラズマ定常 運転 (約1時間)	4 工学技術の 完成	5 統合実証	6 定常 & 正味 発電
Done	Done	Done	Doing	To do	To do
ADDICATE OF THE PARTY OF THE PA					
Heliotron B	LHD	LHD	高温超伝導 液体金属 ブランケット	Helix HARUKA	Helix KANATA

国家戦略においても支援体制が明確。補助金も最大額の20億円を獲得

2025年6月に国家戦略改定

Helical Fusionのみが扱う 「ヘリカル型」について明記

プローチを強力に推進する。また、スタートアップを含めた官民の研究開発力を強化するとともに、イノベーション拠点化を推進することにより、トカマク型、ヘリカル型、レーザー型等多様な方式の挑戦を促す。加えて、

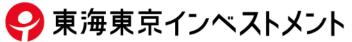
民間、特にスタートアップの 支援について明記

ズまでは更なる研究開発を要するため、フュージョンインダストリーを担う民間企業の研究開発を支援する。特に、スタートアップへの支援については、令和 5 年度から開始した SBIR 制度¹⁵を通じた支援を強化する。

出典:フュージョンエネルギー・イノベーション戦略(令和7年6月4日改定版)

文科省SBIR Phase3基金: 20億円 高温超伝導マグネットを開発中

愛知・中部での連携拡大


世界のエネルギーの未来を作るべく様々な企業が資本参画

地域の産業パートナーと、すでに複数の協業検討を開始

愛知県からの心強い支援

Aichi Deeptech Launchpad 3年連続採択

大村知事からの応援・激励

日本はもう一度世界一になれる

人類が地球で暮らし続けられる

