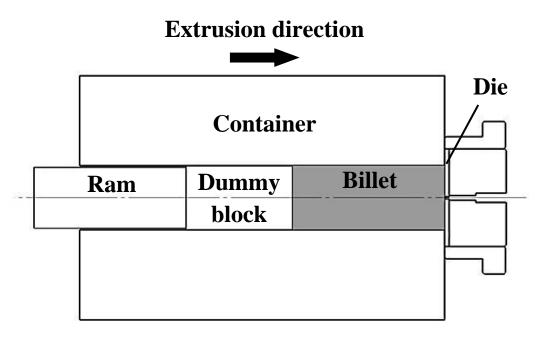
©University of Toyama: 無断転載禁止

『Meet up Chubu 』vol.45 アルミリサイクル in 富山大学

アルミニウム押出し加工プロセスのSDGs対応


2024.8.8 富山大学 学術研究部工学系 教授 白鳥 智美 shira@eng.u-toyama.ac.jp

- 1. はじめに
- 2. 富山大学におけるリサイクルアルミニウムに関する取組み
- 3. SDGs対応 押出し加工シーズ紹介
- 4. 今後の連携について

本日は、押出し加工のSDGs対応について

Schematic view of Extrusion

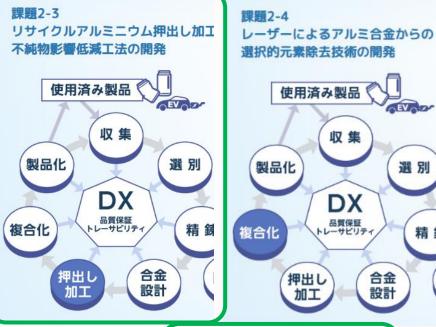
- 1. はじめに
- 2. 富山大学におけるリサイクルアルミニウムに関する取組み
- 3. SDGs対応 押出し加工シーズ紹介
- 4. 今後の連携について

拠点概要 NEWS 研究開発課題 活動内容 研究実績 参画メンバー お問い合わせ アクセス お役立ち動画集 ◎ ♥

富山循環経済モデル創成に向けた 産学官民共創拠点

アルミからはじまる循環経済型イノベーション都市を目指します!

選別


精錬

ドロス

富山大学におけるリサイクルアルミニウムに関する取組み

課題3

課題4

循環経済型社会を支える

研究開発課題2-3

リサイクルアルミニウム押出加工時の不純物影響低減工法の開発

研究開発課題リーダー : 白鳥 智美(富山大学)

船塚 達也(富山大学)

参画機関:三協立山㈱、YKK

AP(株)、アイシン軽金属(株)

研究開発課題5

循環経済型社会構築とそれを担う人財の育成

研究開発課題リーダー : 白鳥 智美(富山大学)

参画機関:富山県アルミ産業協

会、YKK AP㈱、三協立山㈱

- 1. はじめに
- 2. 富山大学におけるリサイクルアルミニウムに関する取組み
- 3. SDGs対応 押出し加工シーズ紹介
- 4. 今後の連携について

3. SDGs対応 押出し加工シーズ紹介

リサイクルアルミニウムでの不純物発生

⇒融点の低い化合物の形成

摩擦の低減、工具寿命の向上

加工発熱制御

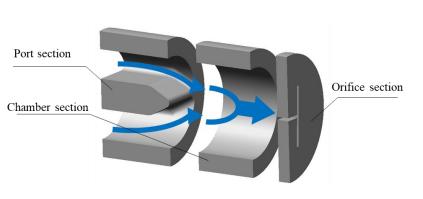
©University of Toyama: 無断転載禁止

加工速度·工具耐用向上

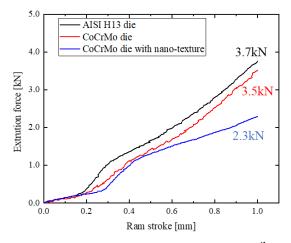
加工精度確保

①ダイレクトリサイクル工法の開発

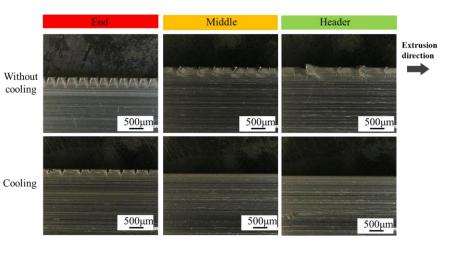
- ⇒擬似ポートホールダイの開発
- ⇒チップ固化材密度や工具設計指針の検討


②新規工具種および 工具仕上げの展開

⇒東北大学発,「コバリオン」CoCrMo材の展開 ⇒ナノメートル周期溝構造による低摩擦摺動の実現


③7000系アルミニウム材の 冷却援用による高生産性技術

⇒冷却工法の開発


⇒コーティング効果の実証

擬似ポートホールダイ概略図

ナノテクスチャを付与したCoCrMoダイによる荷 重低減効果 (マイクロ後方押出し(A6063合金))

氷冷却による熱間押出し材表面割れ欠陥 (テアリング)の低減化

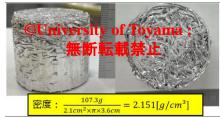
浦川ほか:74回塑加連講論,2024,pp. 129-130.

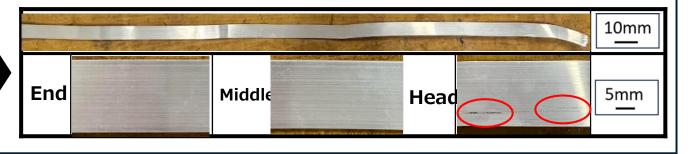
堀内ほか: 2023塑加春講論, 2023, pp. 70-71.

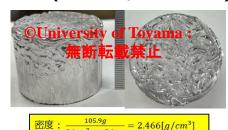
T. Funazuka, K. Dohda, N. Takatusji, K. Takano, & N. Sukunthakan, "Effect of Temperature on Surface Cracking Defects in AA7075 Hot Extrusion.", 25th International Conference on Material Forming, April 27-29, 2022, 227.

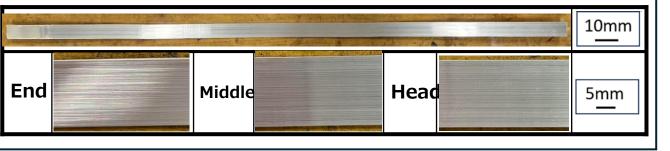
①ダイレクトリサイクル工法の開発

STEP3 押出し加工


A6063合金チップ擬似ポートホールダイ押出し 製品外観


押出し温度:500℃ ラム速度:0.5mm/s ビレット材質:AA6063


 $\frac{61.6g}{1.875cm^2 \times \pi \times 3.4cm} = 1.640[g/cm^3]$



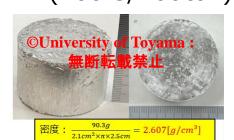
·<u>密度2.466g/cm3</u> (100℃/100ton)

A6063合金チップ擬似ポートホールダイ押出し 製品外観

浦川ほか:74回塑加連講論,2024,pp. 129-130.

©University of Toyama: 無断転載禁止

①ダイレクトリサイクル工法の開発


STEP 3 押出し加工

無断転載禁止 **©University of Toyama:**

押出し温度:500℃

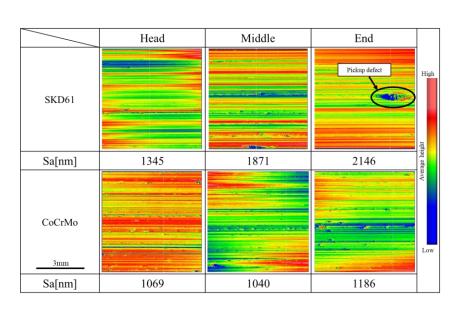
ラム速度: 0.5mm/s ビレット材質: AA6063

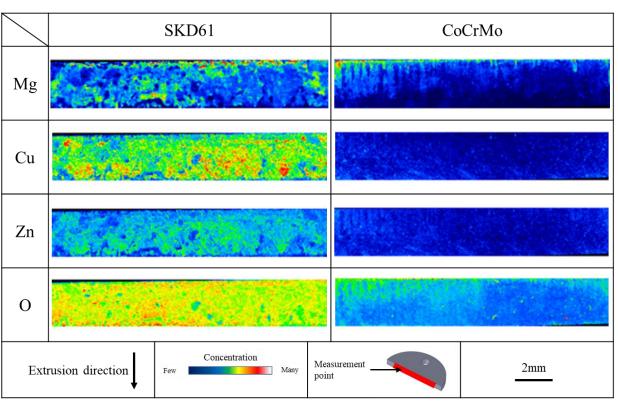
A6063合金チップ擬似ポートホールダイ押出し 製品外観 ·密度2.607g/cm3 (200°C/100ton)

各密度における押出し材の製品欠陥の有無

各密度 欠陥の有無	密度1.640g/cm³ (25°C/15ton)	密度2.151g/cm³ (100°C/50ton)	密度2.466g/cm³ (100°C/100ton)	密度 <mark>2.607</mark> g/cm³ (200°C/100ton)
前半	メ 欠陥あり	×	0	0
中間 .	×	○ 欠陥なし	0	0
後半	0	0	O	0

擬似ポートホールダイでのチップ材密度と製品欠陥のしきい値を確認した.


浦川ほか:74回塑加連講論,2024,pp. 129-130.


② 新規工具種および工具仕上げの展開

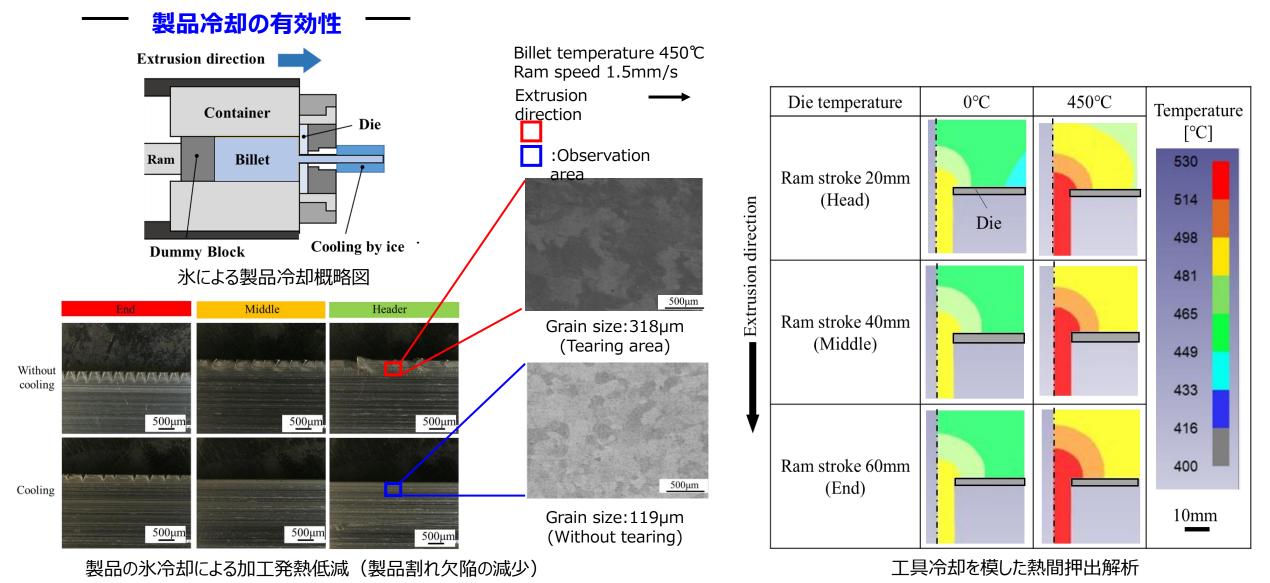
研究開発の意義: CoCrMo材の展開とナノメートル周期溝構造による低摩擦化の実現

押出し温度:500℃ ラム速度:0.5mm/s ビレット材質:AA7075

製品表面粗さ(ダイ材料: SKD61, CoCrMo)

ダイスベアリング面の元素分析(SKD61, CoCrMo)

- ▶ ラム速度0.5mm/sの場合, テアリング(製品表面割れ)は発生しなかった.
- ➤ 押出材の外観はCoCrMoの方が光沢のある表面であった.
- ➤ SKD61, CoCrMoダイいずれもMgとOの反応が強いところが一致しており、MgOが形成されたと考えられるが、CoCrMoダイでは工具酸化が少なく、むしれ欠陥(ピックアップ)も発生せず、製品粗さも一定に推移した。


©University of Toyama: 無断転載禁止

③7000系アルミニウム材の冷却援用による高生産性技術

©University of Toyama: 無断転載禁止

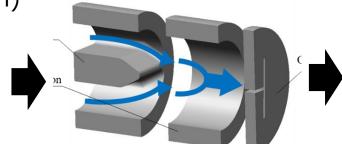
研究開発の意義:7000系アルミニウムの高速安定押出し技術の創出

出典: T. Funazuka, K. Dohda, N. Takatusji, K. Takano, & N. Sukunthakan, "Effect of Temperature on Surface Cracking Defects in AA7075 Hot Extrusion.", 25th International Conference on Material Forming, April 27-29, 2022, 227.

- 1. はじめに
- 2. 富山大学におけるリサイクルアルミニウムに関する取組み
- 3. SDGs対応 押出し加工シーズ紹介
- 4. 今後の連携について

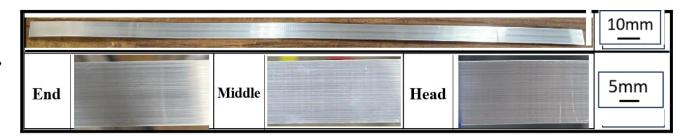
©University of Toyama: 無断転載禁止

ダイレクトリサイクル工法の実用化に興味のある企業様


·<u>密度2.607g/cm3</u> (200℃/100ton)

(200 C/100tOII)

©University of Toyama:
無断転載禁止


 $\frac{90.3g}{2.1cm^2 \times x \times 2.5cm} = 2.607[g/cm^3]$

疑似ポートホールダイ

(b) Pseudo port-hole die

A6063合金チップ擬似ポートホールダイ押出し 製品外観

金型の高精度化および高寿命化に興味がある企業様

CoCrMo工具

ナノ周期構造付与工具

<u>CFRP金型</u>