

『Meet up Chubu』vol.18 インフォマティクス

MIを材料開発に!コスト削減と開発の加速を支援

株式会社 日立ハイテク SCレジリエンス推進本部 マテリアルソリューション部 林 貴之

自己紹介

株式会社 日立ハイテク (日立製作所から出向中) SCレジリエンス推進本部 マテリアルソリューション部

林貴之(ハヤシタカユキ)

	主要顧客	民間企業のR&D部門
+ロ // **********************************	役割	データサイエンティスト
担当業務	業務内容	お客様の材料データをお預かりし 機械学習などを活用してデータ分析を代行し 分析結果をレポートします。
データ 分析関連	資格	 応用情報技術者 統計検定2級 統計調査士 JDLA Deep Learning For GENERAL (2023#1) AWS Certified Machine Learning – Specialty (MLS-C01)

アジェンダ

- ①材料開発における課題
- ②MIを用いた解決事例
- ③サービス概要

①材料開発における課題

①材料開発における課題

高品質な材料探索に 時間とコストがかかりすぎる

原材料と配合比率のパターンが多すぎる…

Α >	(в)	(C)	D
80%	30%	10%	10%
70%	20%	8%	8%
60%	10%	6%	6%
• • •	• • •	• • •	• • •

画像から品質を判定するが 属人的になってしまう

電子顕微鏡画像の品質を 熟練者が経験・勘で判断している

これでは工数がかかるし 属人的で再現性がない…

大量の文献から実験データを 抽出するのは難しい

新規特許から 実験データを作成したい

でも…大量の文献から 実験データを抽出するのは 負担が多い

①材料開発における課題

高品質な材料探索に 時間とコストがかかりすぎる

原材料と配合比率のパターンが多すぎる…

画像から品質を判定するが 属人的になってしまう

電子顕微鏡画像の品質を 熟練者が経験・勘で判断している

これでは工数がかかるし 属人的で再現性がない…

大量の文献から実験データを 抽出するのは難しい

新規特許から 実験データを作成したい

でも…大量の文献から 実験データを抽出するのは 負担が多い

①材料開発における課題: MIとは

説明変数X

- 実験データ
- 化合物
- 原料配合比
- 実験プロセス
- 画像データ
- シミュレーションデータ
- 特許データ

順解析 機械学習モデル Y=f(X)

目的変数Y

- 実験データ
- 物性/活性/毒性
- 材料品質
- ・画像の異常面積

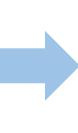
逆解析

実験データを活用し、機械学習やAIを駆使した 多次元分析を実施することで材料特性の仮想実験を行う

①材料開発における課題:【STEP1】機械学習モデルの構築

説明変数X

- 実験データ
- 化合物
- 原料配合比
- 実験プロセス
- 画像データ
- シミュレーションデータ
- 特許データ



機械学習モデル

目的変数Y

- 実験データ
- 物性/活性/毒性
- 材料品質
- 画像の異常面積

【機械学習モデル】

説明変数X と 目的変数Y を用いて 関数 f を構築する

①材料開発における課題:【STEP2】順解析

説明変数X

- 実験データ
- 化合物
- 原料配合比
- 実験プロセス
- 画像データ
- シミュレーションデータ
- 特許データ

順解析

機械学習モデル

$$Y=f(X)$$

目的変数Y

- 実験データ
- 物性/活性/毒性
- · 材料品質
- ・ 画像の異常面積

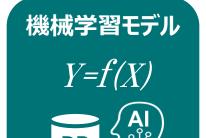
【順解析】

変数×に値を入力 → 予測値Yを得る

①材料開発における課題:【STEP3】逆解析

説明変数X

- 実験データ
- 化合物
- 原料配合比
- 実験プロセス
- 画像データ
- シミュレーションデータ
- 特許データ



逆解析

目的変数Y

- 実験データ
- 物性/活性/毒性
- 材料品質
- ・ 画像の異常面積

【逆解析】

物性値Yに値を入力 → 変数Xの値を得る

③ MIを用いた解決事例

②解決事例:順解析·逆解析(概要)

お悩み①:高品質となる条件の探索に時間・コストがかかる

- / 実験回数・コストの削減
- ✓ 品質の向上

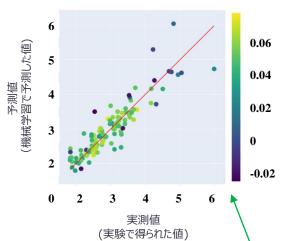
②MI分析のコア技術 【順解析】

材料特性の予測精度と解釈性を両立して、材料設計指針に資する情報を提供

■予測性能

* イメージ図

<予測値-実測値グラフ>



#	アルゴリズム(例)	相関係数 (R)	平均誤差 (MAE)
1	eXtreme Gradient Boosting(XGB)	0.83	0.21
2	Gaussian Process(GP)	0.81	0.23
3	Support Vector Machine(SVM)	0.83	0.22
4	Partial Linear Square Regression(PLS)	0.81	0.23
:	:	:	:

AD (Applicability Domain) スコア

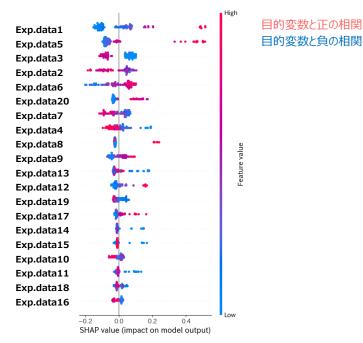
モデルが十分な性能を発揮できるデータ領域。

KNN(K-Nearest Neighbor)やOCSVM(One-Class SVM)などが使用される。 ADスコアが高いほど信頼性のある予測結果となる。

■説明変数の重要度

(XAIを用いた予測のメカニズムの可視化)

* イメージ図

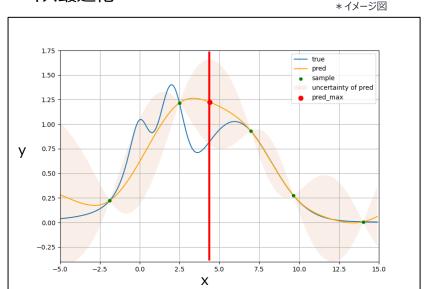


②MI分析のコア技術 【逆解析】

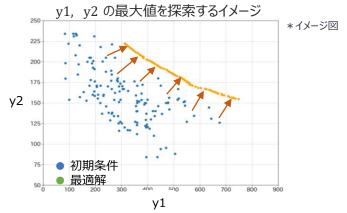
目標とする材料特性を達成し得る実験候補のリストを算出(多目的対応、制約条件付与)

- A) 勾配降下法を用いて応答曲線の停留点を探索
- B) データが未観測の領域を重点的に狙うベイズ最適化も可能

-ベイズ最適化-



C) 複数の目的変数を対象とした多目的最適化にも対応



D)説明変数の制約条件や目的変数の目標範囲指定など 複雑な条件下での逆解析も可能

例) 制約条件	目標値	
10 ≦ 原料A ≦ 20	物性A = 100	
原料A + 原料B + 原料C = 100	物性B ≦ 30	

②MI分析のコア技術【記述子化】

化合物情報をAIが読み取れる情報(記述子)に変換

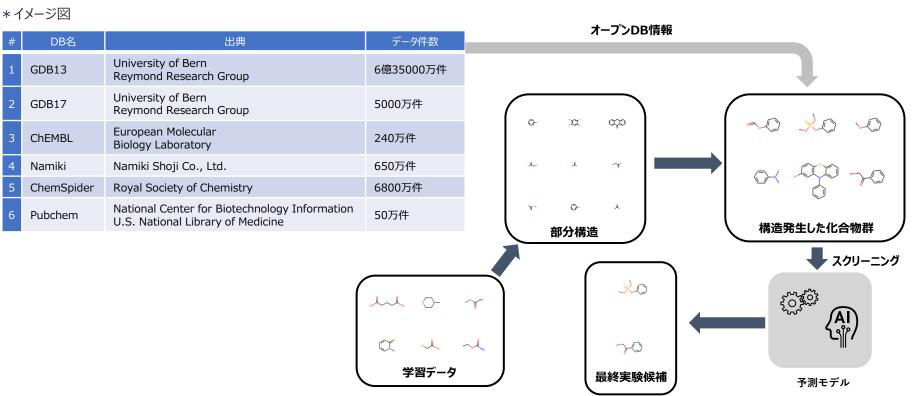
#	記述子	特徴量の数	概要	使用ライブラリ
1	RDKit	208	ケモインフォマティクスの分野で最も使用されている記述子です。 分子量や電荷の情報といった特性記述子と、環構造の数などの構造記述子 とから構成されます。	
2	Avalon FP	512	FP(fingerprint)は、化学構造をある規則でもって 部分構造に分解し、その部分構造を持つ/持たないのビットベクトルで表現し たものです。 規則(ベクトルの次元数,部分構造の定義方法)はこれまでかなりの量が考	RDKit*1
3	MACCSKey FP	166		
4	Morgan FP	1024	案されています。AvalonやMACCSKeyという名前が規則を表します。	
5	Mordred	1613 (2D) 1826 (3D)	RDKitと比較して記述子の種類が豊富であるという特徴を持ちます。 2次元での化学情報に加え、化合物の立体構造を加味した 3次元の化学情報を算出することも可能です。	Mordred*2

^{*1} https://www.rdkit.org/

^{*2} https://www.jstage.jst.go.jp/article/ciqs/2016/0/2016_Y4/_pdf/-char/ja

②MI分析のコア技術【バーチャルスクリーニング】

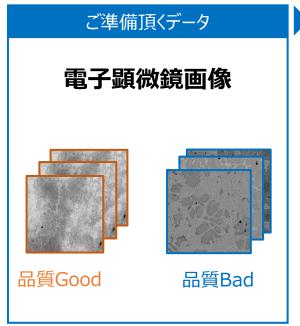
構築したAIモデルで新規生成した化合物&オープンDBから仮想実験が可能

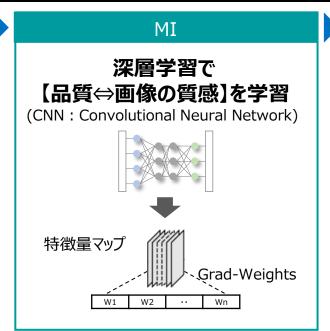


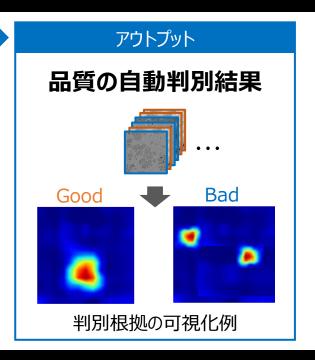
© Hitachi High-Tech Corporation. 2023. All Rights Reserved.

②解決事例:画像分析

お悩み②:画像から品質を判定するスキルが属人化している







´ 自動判別による開発効率化´ スキルの定量化による品質安定化

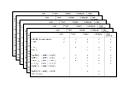
②解決事例:テキストマイニング

デュー お悩み③:大量の文献から実験データを抽出するのは難しい

ご準備頂くデータ

特許と実験データ

二酸化マンガン 15 mol に過酸化 水素水 20 ml を 混合し…, 塩素酸 ナトリウム 15 molを…



物質名・量・操作・温度など 抽出したい **複数カテゴリの情報**

✓ 少量の学習データから自動抽出✓ システム構築による業務効率化

③ サービス概要

③サービス概要:各サービスの特徴

MI分析ができるクラウド環境をご提供

使いやすさ

- 操作性の高いGUI(プログラミング不要)
- 結果のグラフ表示による可視化
- csv出力による情報活用

コンサルサポート

月1回データサイエンティストによるディスカッション

機密性の担保

• 流出事故なし

クラウド上の分析環境

データサイエンティスト

弊社データサイエンティストがMI分析を代行

テーマに合わせた分析が可能

- 順解析
- 逆解析
- 画像解析
- テキストマイニング

データサイエンティストが多数在籍

様々なバックグランドがあり、ドメイン知識が 豊富なデータサイエンティストがテーマに合わせて対応

実験データを一元管理する環境をご提供

使いやすさ

- フーザービリティの高いGUI
- 高い検索性

高い自由度

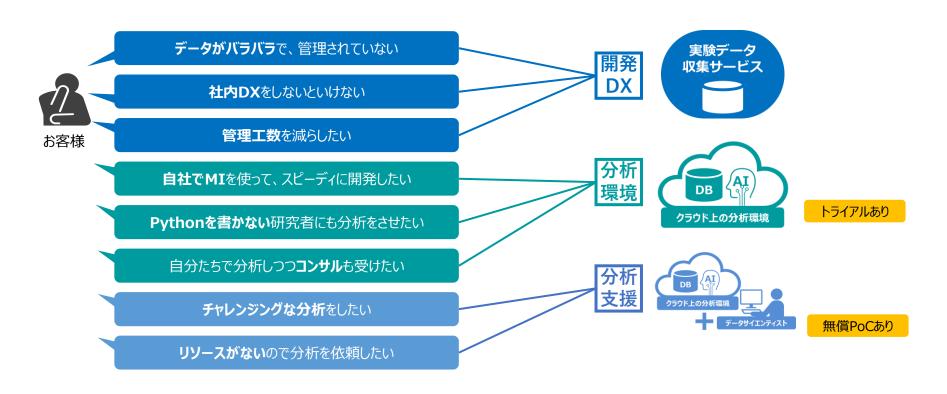
お客様の環境に合わせた拡張

安全·安心

- 柔軟なアクセス管理
- 手厚い保守サポート

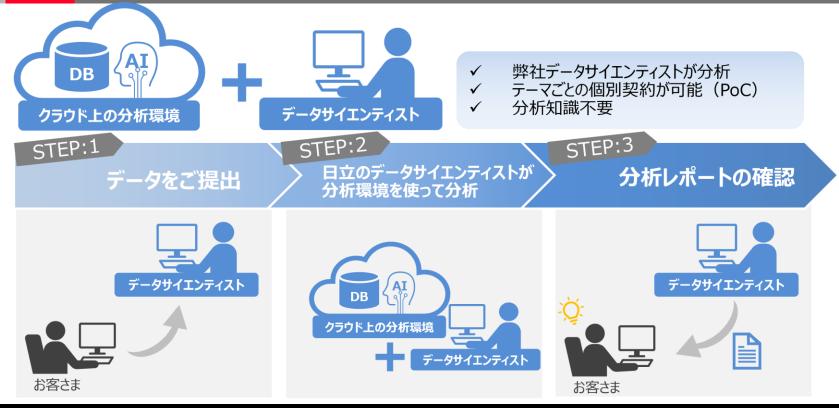
手厚いサポートと豊富な実績、安全性の高さに定評があります

③サービス概要:頻出課題と日立ハイテクが提供するソリューション案内



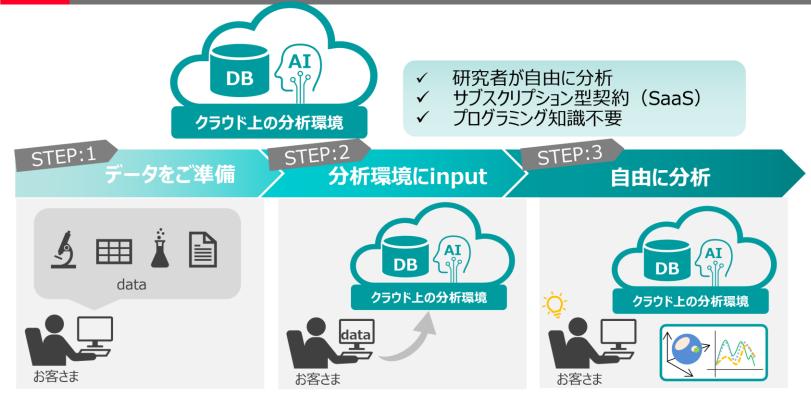
お客様の課題に合わせて選択可能・組み合わせ自由

③サービス概要:材料データ分析支援サービス



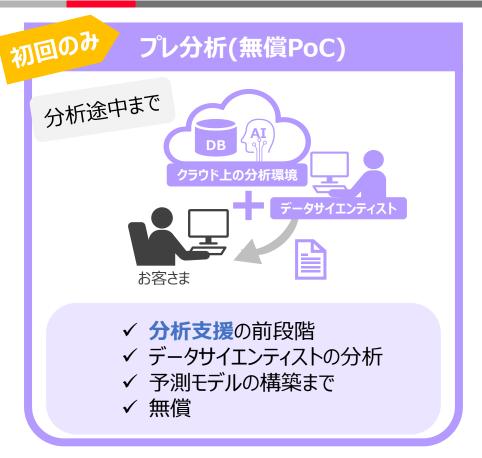
テーマに合わせて日立のデータサイエンティストが分析を行います

③サービス概要:材料データ分析環境 提供サービス



お客様がご自身で分析を行うサブスク型のMIツールです

③サービス概要:体験可能な2つのサービス



③サービス概要:体験サービス プレ分析 (無償PoC)

③サービス概要:体験サービス プレ分析 (無償PoC)

初回のみ

課題のヒアリング

データ整形

学習モデルの 構築

学習モデルの精度向上

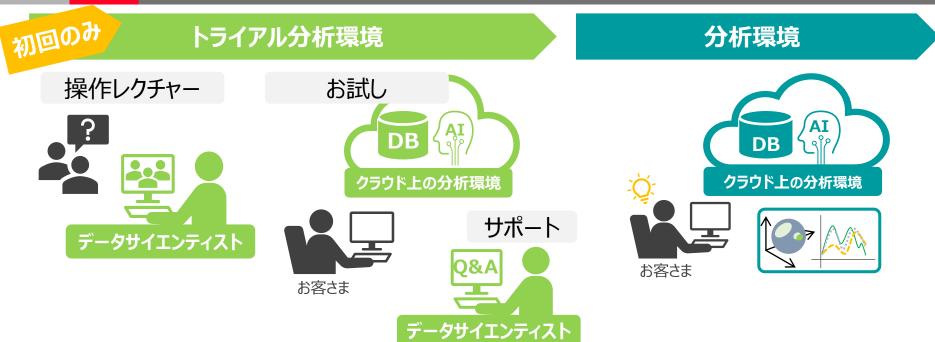
逆解析による 実験候補の策定



プレ分析【無償】を体験可能

③サービス概要:体験サービス トライアル分析環境

③サービス概要:体験サービス トライアル分析環境



特別価格で体験可能

